
Chapter Three (Part 1) 
 

Materials Performance Indices 
(Without Shape) 



Adapted from M.F. Ashby 

Materials 

Attributes: Physical 
Mechanical, 
Economic, Thermal, 
Electrical, 
Environmental 

Function 

Shape 

Process 

Casting 

Extrusion 

Sheet 

3-D 

 The selection of a material 
depends on the interaction 
between the MATERIAL 
and FUNCTION. 

A link must be established 
between MATERIAL, FUNCTION 
with the PROCESS and SHAPE 
playing an important role 



MATERIAL ATTRIBUTES 



• An engineering component has:  

(boundary condition for Materials Selection) 

 

1. Function: to carry load, transmit heat, contain a pressure, etc.. 

What does the component do? 

 

2. Objectives: as cheap as possible, light, safe, strong, etc… 

What is to be Maximised or Minimised? 

 

3. Constraints: subject to constraints such as carry load without failure, 
certain dimensions are fixed, cost is within limits etc… 

 What non-negotiable conditions are to be met? (Rigid) 

 What negotiable but desirable conditions? (Soft) 



4. Free Variables: materials choice, cross-section area, thickness, and 

length are free 

 Which design variables are free? (variables which can be changed) 



e.g. an engineering component has:  
(boundary condition for Materials Selection) 

Heat Sink for hot microchips 

Function  Heat sink 
Objective  Maximize thermal conductivity 
Constraints  - Materials must be good insulator 

- All dimensions are specified 
 

Free variables  Choice of material 



 

• Two concepts are used in the selection procedure: 

 

1. Materials Performance Index 

 Combination of materials properties that characterise the 
performance of a material in a given application (Ashby) 

 

2. Materials Selection Charts 

  Plots of materials properties that form the maximising factors 



1) Material Performance Indices 

 

• Performance of a component/structure is specified by: 

1. Functional requirements (function) (F) e.g. carry loads, transmit 
energy, store energy etc. 

2. Geometry, (G) 

3. Materials properties, (M) 

 

Performance:  

 

P = f [(functional requirements, F); (geometry, G); (materials properties, M)] 

  MGFfP ,,

Two concepts are used in the selection procedure: 



• Optimum design is selection of a material which maximise (strength, 
stiffness) or minimise (weight, cost) the performance, P.  

 

• In many cases, the function, geometry and materials properties are 
independent of each other and are said to be separable. 

 

  

 

• Which means that the optimum selection of a material is independent of 
the details of the design.  It is the same for all geometries and values of 
functional requirements.  

 

• Performance is maximised by maximising f3(M) and is called 
“Performance Index, M ” 

     MfGfFfP 321 



Function Objective 

Minimum Weight 

Minimum Cost 

Minimum Energy 
Storage 

Minimum 
Environmental Impact 

Constraint 

Stiffness 

Strength 

Fatigue 

Creep 

PI 

M = E1/2/ 

Specification of Function, Objective and Constraint leads to a material 

performance index M. (after Ashby, 1999) 

Beam  

Tie 

Column 

Shaft 



Functions and Constraints    Maximise (Stiffness) 

Tie (tensile strut) 

Stiffness, length specified, section area free   E/  

Beam (loaded in bending) 

Stiffness, length, shape specified, section area free  E1/2/   

Stiffness, length, height specified, width free    E/  

Stiffness, length, width specified, height free   E1/3/   

Panel (flat plate, loaded in bending) 

Stiffness, length, width specified, thickness free    E1/3/  

Panel (flat plate, buckling failure) 

Collapse load, length and width specified, thickness free  E1/3/  

After M.F. Ashby  



Functions and Constraints    Maximise (Strength) 

Tie (tensile strut) 

Stiffness, length specified, section area free   f /  

Beam (loaded in bending) 

Stiffness, length, shape specified, section area free  f 
2/3/   

Stiffness, length, height specified, width free    f /   

Stiffness, length, width specified, height free    f 
1/2/    

Panel (flat plate, loaded in bending) 

Stiffness, length, width specified, thickness free    f 
1/2/    

Panel (flat plate, buckling failure) 

Collapse load, length and width specified, thickness free  f 
1/2/    

After M.F. Ashby  

Strength (not 
stiffness) 



Example 1: Performance Index for a light, stiff beam 

 

 

 

 

 

 

 

• FUNCTION : Beam (bending) 

• OBJECTIVE : minimise mass (weight) 

• CONSTRAINT(S): Stiffness is S = F/ (must not deflect more than ) 

• FREE VRIABLE(S): Cross-sectional area (A), material 

F 

L 

b 

b 

Deflection,  

(Force) 

L 



 

• The beam of square section, loaded in bending. Its stiffness is S = F/ 
(must not deflect more than ) 

 

• Constraint on stiffness is given by:    (1) 

 

 

• For a square cross section, “I” is given by:   (2) 

 

 

• The mass (Objective), m, is given by:    (3)  
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• The free variable is the cross section area, A = b2 

• Combining equations (1), (2) and (3), the free variable, A, can be 
eliminated and we then obtain: 

 

         (4) 
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The best materials for a light, stiff beam are 

those with the smallest value of ρ/E1/2 . 

Therefore, to minimize the mass 


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OBJECTIVE : minimize mass (weight) 

PERFORMANCE INDEX 



Example 1: Performance Index for a light, stiff beam 

 

• A light and stiff beam (cross section free) is one with the largest: 

 

 

• If height is free, the material index is: 

 

 

• If the width is free, the material index is: 
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Steps in deriving a “performance Index” 
 

1. Identify the primary FUNCTION  

2. Develop an equation for the OBJECTIVE (objective function): e.g; weight, cost, 
etc… (to be maximised or minimised). Objective function contains one or more 
free variables.  

3. Identify the CONSTRAINTS (which must be met), rank them in order of 
importance 

4. Identify the FREE VARIABLES (unspecified) 

5. Develop equations for the constraints (no failure, no buckling, cost below 
target…) 

6. Eliminate the free variable(s) in the objective equation using the constraints. 

7. Group the variables into 3 groups: F, G, M 

8. Read-off the grouping of materials properties, (called the “PERFORMANCE 
INDEX”), which maximise the objective 



• A tie is loaded in tension (FUNCTION) 
(stiffness limited design at lowest mass) 

• Specified dimensions (CONSTRAINTS): 
F, L and  .  

• Free variable: cross-sectional area, A. 

 

• Mass (OBJECTIVE): 

     

    (1) 

 

• Deflection: 

      

     (2) 
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Example 2: Performance Index for a light and stiff cylindrical tie 

Alm 



• This gives the area A; 

 

 

• Substituting (3) into (1) gives:  

 

 

 

• To minimise the weight (mass) the material 
performance index  

 

 

  

 should be maximised and the E -  chart 
will be used to select the optimum material 
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• A tie is loaded in tension  (FUNCTION), carry load, F without failure 

• Specified dimensions (CONSTRAINTS): F, L, failure (f) 

• FREE VARIABLE: cross-sectional area, A. 

• Reduce Mass (OBJECTIVE): 

            (1) 

 

• The tie must carry load F without failure:   (2) 

Example 3: Performance Index for a light & strong cylindrical tie 
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Example 4: Performance Index for a light and stiff panel (fixed width) 

F 

L 
t 

w 

(Force) 

L 

FUNCTION 

OBJECTIVE 

CONSTRAINT 

FREE VARIABLE 

Panel (beam): bending 

Reduce weight: m = AL = w t L   (1) 

Stiffness S = F/  = CEI/ L3, I = w t3/ 12  (2) 

Thickness, t 



We get the free variable, t, from Eq. (2),  

 

 

 

 

Replacing t into Eq. 1, we get: 

 

 

 

 

 

We select materials with the largest  
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2) Materials Selection Charts 

 

• The selection of the optimum material is made more simple by the use 

of “Materials Selection Charts” 

 

• Materials selection charts are plots of the properties that form the 
maximising factors.  

 

• The performance index is made up of 2 properties (e.g; E & ). The 
material selection chart is then created with axis (log by default) of E 
and .  

Two concepts are used in the selection procedure: 



After M.F. Ashby  



• The performance index, M, plots as a diagonal line on the chart. Its 
slope is very important.  

 

• For the performance index M = E/ . We take log; 

 

Log E = log M + log   

 

• A line of slope 1 on the chart describes the index; its position is 
determined by the value of M.  

 

• For M = E 1/2 /  and E 1/3 /  , gives lines with slope 2 and 3 
respectively. 

 

• They are called “design guidelines” 





After M.F. Ashby  



After M.F. Ashby  



M = 3 

M = 10 

M = 30 

M = 100 

All parallel lines 

have the same 

performance 

M = 100 is 1/10 the 

weight of M = 10 

 

M = 30 is 1/3 the 

weight of M = 10 



Constraints on the materials selection charts 

 

• Selection of a material is influenced by constraints. 

 

• Constraints appear as horizontal or vertical lines on the selection chart 

 

• The primary constraints eliminate blocks of materials leaving a viable 
search region.  

 

• The next step in selecting a material operates only on those materials 
which are left inside the search region 



After M.F. Ashby  

Red lines are 

Constraints 

Search region 



Example 

 

 Use the E-  chart to find the material with modulus E > 90 GPa and 
density  < 2 Mg/m3  

 



M = E1/2 /  

 = 2 Mg/m3 

E = 90 GPa 

These materials 

can be selected for 

the  constraint only 



Multiple Constraints 

 

• Most materials selection problems are over-constrained with more 
constraints than free variables. 

 

• e.g; a component may require minimum weight, but with constraints on 
stiffness, strength and toughness which must also be met.  

 

• This requires the use of several performance indices and several 
materials selection charts to identify the optimum material 



• To solve this problem the following steps are considered: 

 

1. Identify the most important constraint [minimum weight without yielding 
(plastic deformation)] and identify the appropriate materials 
performance index. Ignore the remaining constraints.  

 

2. Use this to identify a subset of materials which maximise this 
performance index. 

 

3. Repeat for the next constraint(s) giving a second or a third performance 
index. 



4. Then, identify a subset of materials which satisfy all performance 
indices. 

 

• The second index may be plotted on the same chart as the first. The 
sector isolated above the two lines contains the subset of materials 
which satisfy the two criteria: E1/2 / > 8 GPa1/2 /Mg/m3 and E > 10 
GPa.  

 

• More often, however, the extra constraint involves a property which 
does not appear on the first chart. 

 

• In this case, the members of the first subset of materials are tabulated, 
ranking them using a grid of performance index values 



Example 

 

1. Use the E-  chart to find the material with modulus E > 100 GPa and 
density  < 2 Mg/m3  

 

2. Use the E-  chart to identify the subset of materials with both modulus 
E > 100 GPa and the performance index M = E1/2 /  > (6 GPa)1/2 / 
(Mg/ m3) 



M = E1/2 /  

 = 2 Mg/m3 

E = 90 GPa 

These materials 

can be selected for 

the  constraint only 



M = E1/2 /  

 = 2 Mg/m3 

E = 100 GPa 

These materials 

can be selected for 

the M=E1/2/ 

constraint only 



• The second index is used, with the appropriate chart, to identify a 
second subset of materials. Common members of the two subsets are 

identified and ranked according to their success in maximising the two 
performance indices. 

 

• Consider a problem with one design goal, one free variable and two 
constraints. 

 

• The result is two equations for the performance, each with the equation: 

 

P = f1 (F) . f2 (G) . f3 (M) 

P = g1 (F) . g2 (G) . g3 (M) 

 



• The performance is maximised by choosing: 

 

1. Material with the largest “f3 (M)” 

2. Material with the largest “g3 (M)” 

 

• The two equations must have equal values. The two performance 
indices are coupled. 
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Example 4: Performance Index for a light, stiff and strong tie 

• The tie (loaded in tension) is to support a 
load F, at minimum weight, without failing 
or extending by more than   

 

• Objective function: reduce weight  

m = A L   (1) 

 

• Specified dimensions: F and L   

• Constraints: failure and stiffness  

• Free variable: cross-sectional area, A. 

 
After M.F. Ashby  



• We need to derive 2 performance indices 

• M1 for the stiffness constraint has already been 

derived in example 2 as: 

 

 

 

• M2 for the failure constraint has also been  derived 

in example 2 as: 

 

 

 

• Since the weight is the same so that: M1= M2 

 This is called the “coupling equation” 
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L/=10 

L/=100 

L/=1000 

L/=10000 

After M.F. Ashby 



Multiple Design Goals 

 

• For example, a design goal is to minimise weight, another is to 
minimise cost (how is weight to be compared to cost (they have 
different units?) 

 

• The designer must assess the relative importance of all design goals 
by using “weighting factors” to each design goal 

 

• First, the design goals are ranked in order of importance: a numerical 
factor of “10” is given to the most important goal and a factor of “1” is 

given to the least important 



• The performance index for each design goal (starting with the most 
important) is determined 

 

• Finally, the overall performance index is calculated by combining the 
performance index M obtained from each design goal 

 

• Where a1> a2> a3, are the weighting factors.  

 

 

 

• Alternatively a trade-off between the objectives should be used. This is 
illustrated in the next example.  

...332211  MaMaMaM



Example 5: Stiff electronic casing (notebook) with minimum thickness and weight 

FUNCTION 

OBJECTIVES 

CONSTRAINT 

FREE VARIABLE 

Bending 

1. Minimum thickness, t  

2. Reduce weight: m = AL = w t L  

Stiffness S = F/  = CEI/ L3, I = w t3/ 12 

t 

F 

L 
t 

w 

(Force) 

L 



OBJECTIVE 1 Minimum thickness, t  
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OBJECTIVE 2 Reduce weight, m  
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See example 3.1.5 



• For multiple objectives, we need to determine the relative performance 
indices.  

• That is, suppose the casing is currently made of material M0 
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2. The mass of a casing made 
from an alternative material M, 
will be different from that made 
of material M0 by the factor: 

1. The thickness of a casing made 
from an alternative material M, 
will be different from that made 
of material M0 by the factor: 

• The trade-off between thickness and mass can be determined using the 
chart  
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m
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TRADE-OFF PLOT 

POSSIBLE MATERIALS: CFRP, Al & Mg alloys (Offer low mass at minimum thickness) 



MATERIALS SELECTION CHARTSMATERIALS SELECTION CHARTSMATERIALS SELECTION CHARTSMATERIALS SELECTION CHARTS




























